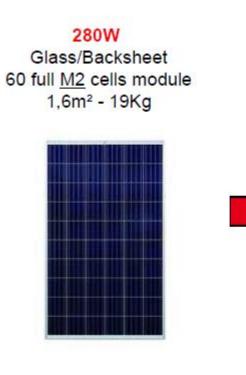
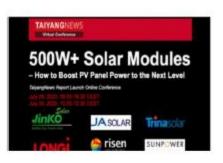


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792059

Oct. 27th PV Modules: Bifacial technology (14:30-16:30)


Paul Berthelemy, CEA

GLOBAL OPTIMIZATION OF INTEGRATED PHOTOVOLTAIC SYSTEM FOR LOW ELECTRICITY COST



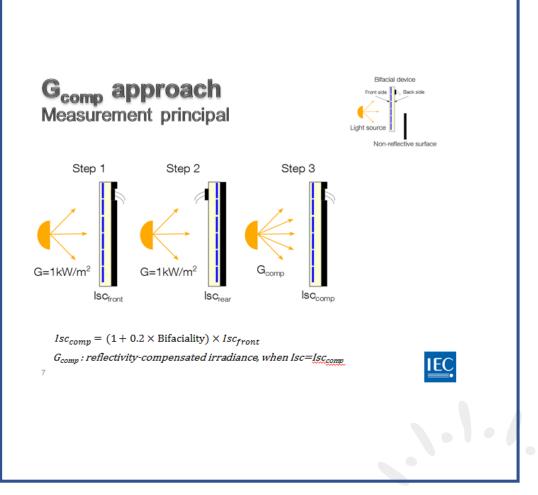
GoPV Project | 1st TRAINING COURSES TECHNICAL FOCUS ON FUTURE SOLAR PV SYSTEMS

Two methods proposed by the IEC 60904-1-2 standard

Method 1:

Simultaneous measurement on both sides of the module with an irradiation of 1000W/m² on the front side and 100W/m² and 200W/m² on the back side:

→ Pmax_{BiEi10} and Pmax_{BiEi20}.


Method 2:

a/Measurement under $1000W/m^2$ of the module on the front and back side.

→ Determination of the bifaciality coefficient

b/ Front panel measurement at a power greater than $1000W/m^2$ determined by:

 $G_{E_i} = 1000W/m^2 + \varphi \times G_{R_i}$ GRi= 100W/m² et 200W/m²

BIFA		REARSIDI	E POWER (GAIN			
	Maximum Power (Pmax)	399Wp	404Wp	410Wp	415Wp	420Wp	Jinko
5%	Module Efficiency STC (%)	19.49%	19.75%	20.00%	20.26%	20.52%	Building Your Trust to Sch
	Maximum Power (Pmax)	437Wp	443W/p	449Wp	454Wp	460Wp	
15%	Module Efficiency STC (%)	21,35%	21,63%	21,91%	22,19%	22,47%	
	Maximum Power (Pmax)	475Wp	481Wp	488Wp	494Wp	500Wp	
25%	Module Efficiency STC (%)	23,20%	23,51%	23,81%	24,12%	24,42%	

ELECTRICAL DATA (STC)

Peak Power Watts-Pwax (Wp)*	345	350	355	360	365		
Power Output Tolerance-Pwx (W)	0~+5						
Maximum Power Voltage-V+++ (V)	39.0	39.2	39.4	39.6	39.8		
Maximum Power Current-Iww (A)	8.85	8.93	9.01	9.09	9.17		
Open Circuit Voltage-Voc (V)	47.4	47.6	47.8	48.0	48.2		
Short: Circuit Current-Is: (A)	9.47	9.54	9.61	9.68	9.75		
Module E, clency R (%)	17.4	17.7	17.9	182	18.4		

402 20.2 420 21.2 455

23.0

450

22.7

444

22.4

STC intellance 1000W/m*, Cell Temporature 25°C, Air Nacc AM1.5. *Measurement tolerance: ±9%.

Power Output(W)

Module E_ciency(%)

25%

3I-FACIAL OUTPUT - Backside Power Gain							
10%-	Power Dutput(W)	380	385	391	395		
2070	Module E, ciency(%)	19.1	19.5	19.7	20.0		
15%	Power Output(W)	397	403	408	414		
1246	Module E_ciency(%)	20.0	20.3	20.6	20.9		

438

22.1

431

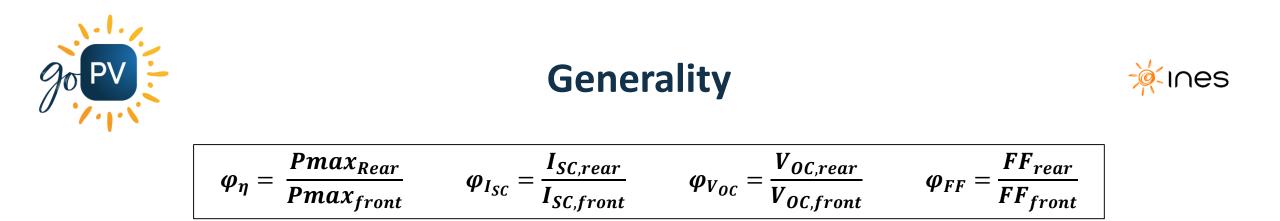
21.6

With Different Power Generation Gain (regarding 405W as an example)

Power Gain (%)	Peak Power (Pmax) (W)	MPP Voltage (Vmp)(V)	MPP Current (Imp) (A)	Open Circuit Voltage (Voc) (V)	Short Circuit Current (Isc) (A)
10	437	41.8	10.46	50.1	10.98
15	454	41.9	10.84	50.2	11.38
20	470	41.9	11.22	50.2	11.78
25	486	41.9	11.60	50.2	12.18
30	502	41.9	11.99	50.2	12.57

Conférence INES – Déploiement de la technologie bifaciale – Innovation technologique et performance des modules – Y-Veschetti-13/10/2020

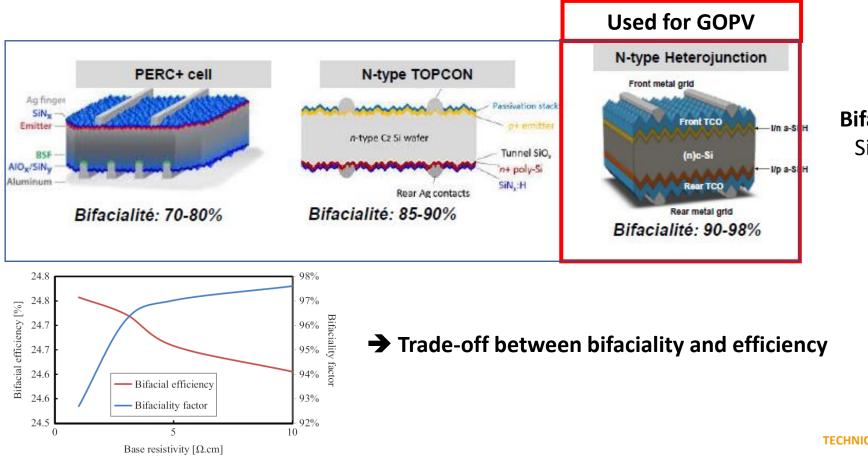
GoPV Project | 1st TRAINING COURSES


TECHNICAL FOCUS ON FUTURE SOLAR PV SYSTEMS

- > The switch to the two-glass bifacial is accompanied by an improvement in the power guarantee.
 - From 25 to 30 years, which is explained by a linear annual deterioration reduced to 0.5%/year
- > The **replacement of EVA encapsulant by POE** also supports this trend (PID link).
 - The two-glass design has a better potential in terms of reliability/sustainability
- > However, this better potential is **not an absolute guarantee**.
 - The manufacture of modules glass/glass of poor quality is possible (quality defect (processes...), cells, encapsulant...)

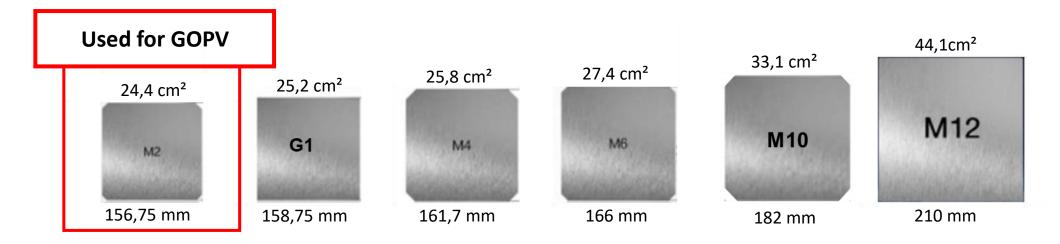
Parameters influencing ϕ

- > Cell simmetry
- Metallization



Cell Technos

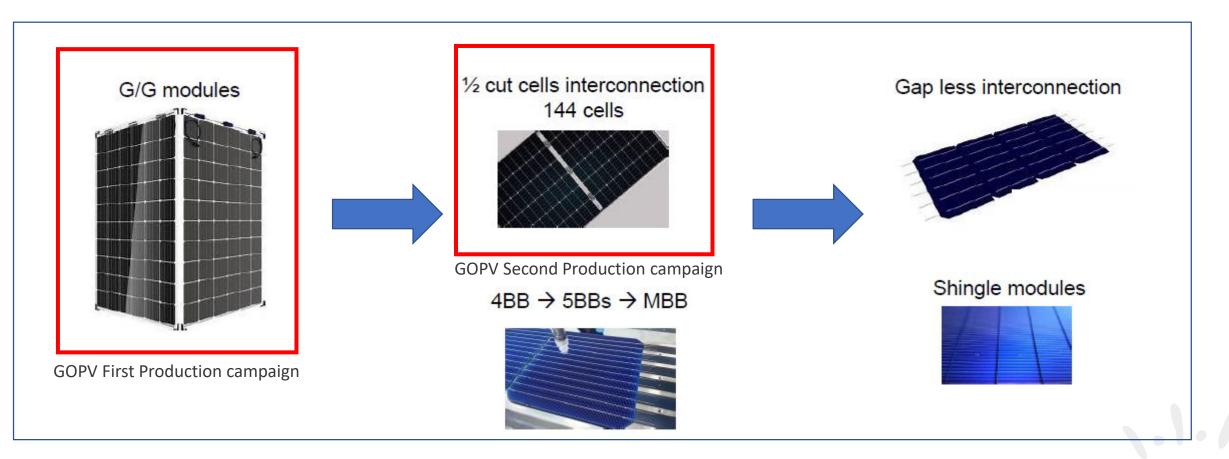
• 2020 : several candidates for the next generation towards yields by 25%.



Bifaciality = Yield Front Side/Yield Back Side

Cells Wafer

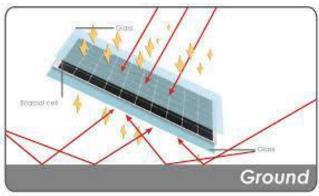
Four main wafer sizes will coexist in the next few years: G1, M6, M10, M12


- G1 wafer = industry standard in 2020; M2 fast decline
- 166 mm (M6) launched by Longi mid 2019
- 210 mm (G12) launched by TZS in Aug 2019
- 182 mm (M10) adopted by 7 leading companies in June 2020
- 210 mm supported through the creation of 600W+ Photovoltaic Open Innovation Ecological Alliance (57 members in sept. 2020)

GoPV Project | 1st TRAINING COURSES TECHNICAL FOCUS ON FUTURE SOLAR PV SYSTEMS


Interconnection

Design Evolution

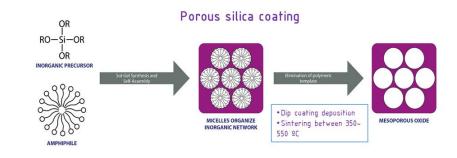


Component variations:

- Rear side: Glass (thickness 2.5mm) or Transparent Backsheet
- Periphery: Standard aluminium frame, mini frame, no frame

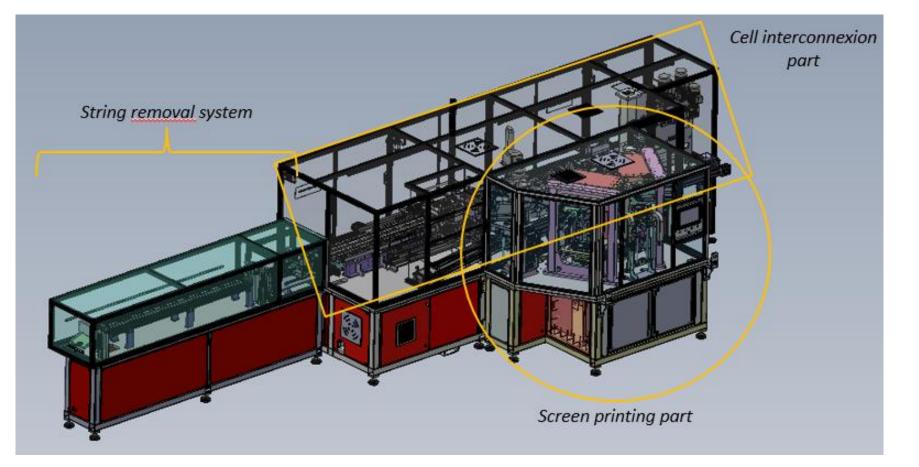
Analysis conducted on the bifacial modules offered on the market

- > The absence of a frame favours glass thicknesses of 2.5mm for mechanical reasons.
- Glass/Glass Design with frame is the current dominant format on the market Nevertheless, manufacturers seem to deviate from this design (breakage/fastening system compatibility).
- > The use of transparent Backsheet is gaining interest (Decrease of 30 % of weight)



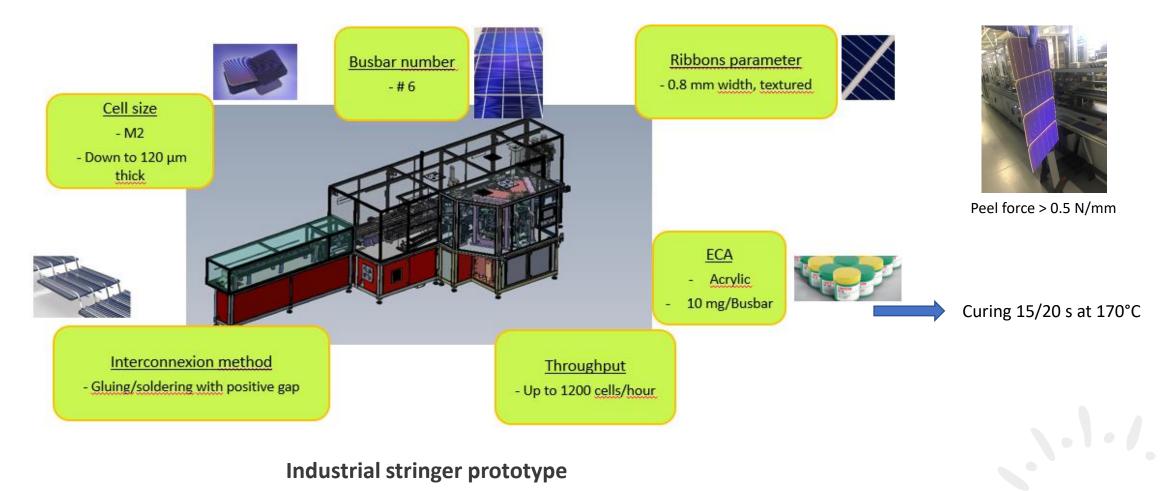
GOPV Production BOM

- Bifacial HJT module 72 cells layout (M2): 370W
- > Cell thickness: 120 μ m; Ag per cell: 140 mg; 6 BB
- Cell interconnection by glueing technology
- ECA per half-cell: 30 mg (ribbon width: 0.8 mm)
- Glass-glass encapsulation
- AR/AS coating : Closed-cell mesoporous silica


GoPV Project | 1st TRAINING COURSES TECHNICAL FOCUS ON FUTURE SOLAR PV SYSTEMS

CTM 96/97 % P (W)

GOPV Production Stringer



Industrial stringer prototype

GoPV Project | 1st TRAINING COURSES TECHNICAL FOCUS ON FUTURE SOLAR PV SYSTEMS

GOPV Production Stringer

GoPV Project | 1st TRAINING COURSES TECHNICAL FOCUS ON FUTURE SOLAR PV SYSTEMS

October 26-29th 2020

i∩es

GLOBAL OPTIMIZATION OF INTEGRATED PHOTOVOLTAIC SYSTEM FOR LOW ELECTRICITY COST

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792059

Thank you for your attention!

Follow us

EPFL

ΪM

Transparent Performance

